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Abstract — The fundamental model and model corrections for the absolute determination of fluid thermal
conductivity using a transient hot-wire technique were studied. Analytical solutions for three heat generation
functions (Dirac, step and ramp) are presented. The ramp heat generation function is shown to offer several
advantages over the step function, which is currently used by experimenters. Expressions for the corrections
to the idealized model of a ramp forced system are presented for: heat capacity effect, truncation error, non-

uniform wire radius, bounded media, Knudsen effects, axial conduction, free convection and radiation.

NOMENCLATURE

ratio of radiative to conductive heat flux;
outer cell radius [m];

specific heat [Wskg ' K™'];

exp(y);

exp(l + ¥);

characteristic dimension ;

exponential integral ;

gravitational acceleration [ms~%];
Bessel function;

interfacial conductance
[Wm™2K"*];

(Ho P/nk);

black body radiation intensity;
thermal conductivity [Wm ™t K ™'];
mean extinction coefficient;

wire length [m];

accumulation of high-order terms;
wire perimeter (2nr,,) [m];

heat flux [Wm™'};

heat content of a pulse;

slope of the ramp [Wm™*s™1];
q/(mkTo);

gra/kTy;

radial position;

wire radius [m];

(r/rw)s

area (wr2) [m?];

time [s];

temperature [K];

axial velocity [ms™1];

ur,/v;

radial velocity [ms™'];

Ur/v;

Bessel function;

axial position;

z/ry;

Bouguer number, xr,,;

Prandtl number;

coefficient

*The author to whom correspondence should be made.

Gr,

§

Grashof number, [gfr3Ty/v?];
frequency.

Greek symbols

o, thermal diffusivity [m?s™!];

B, thermal expansion coefficient [K™'];

Y, Euler’s constant (0.5772);

8, difference;

Oy thermal boundary layer thickness {m];

A, difference;

g, emissivity;

p,  density [kgm™?];

A, mean free path;

v, kinematic viscosity [m?s™'];

#  Hjo

o, Stefan—Boltzman constant;

K, absorption coefficient [m™*'];

T, vt/rZ (unless defined otherwise), for wire 7,
= o,t/ri;

Tos optical thickness;

o, (T — To)/To;

¥,  empirical factor;

&, numerical factor;

&, numerical factor;

7 refractive index ;

Superscripts
T,  average;
* at the time of the onset of convection.
Subscripts

w, wire;

£ fluid ;

0, initial;

r, radiative;

c, conductive.

1. INTRODUCTION

THE THERMAL conductivity of liquids and gases has
proved to be one of the most difficult properties to
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predict and to measure. On a molecular scale, the
thermal conductivity of polyatomic molecules differs
from viscosity and diffusivity in that energy flux
includes a contribution due to internal degrees of
freedom as well as a contribution due to translational
energy [1]. Past experimental determinations of
thermal conductivity have been hindered by the onset
of natural convection and radiation. Recently,
however, a number of investigators [2-7] have made
significant experimental progress through modifi-
cations of the transient hot-wire measurement
technique.

Basically, the transient hot-wire method consists of
imposing a heat generation function on a vertical wire
which is immersed in a stationary cylinder containing
the fluid of interest. The temperature change of the
wire, AT,, which is a function of the heat conducted by
the fluid, is measured as a function of time, 1. The
thermal conductivity of the fluid is then determined
from the analytical solution of the partial differential
equations describing the transient conduction
phenomena in the system.

To date, only one heat generation function, the step
function, has been extensively used. The use of the step
function for heat generation necessitates very short
experimental times, typically less than 25 [2,5,6,8], or
for less accurate measurements, less than 20s [7]. The
short duration of the experiment has necessitated data
acquisition equipment that is sophisticated and/or
expensive. Other heat generation functions which may
be wused in transient thermal conductivity
measurements include the Dirac and the ramp
functions.

The Dirac function represents the simplest forcing
function which may be employed. The short duration
and the small amount of heat input to the system
minimizes any contributions to the apparent thermal
conductivity from convection and radiation. The
major disadvantage of the Diracinputis the high speed
the precise measurements require to deduce the
thermal conductivity.

The ramp function possesses several unique
qualities which make it useful for thermal conductivity
measurements. Since the temperature rise of the wire is
gradual, convective and radiative contributions to the
apparent thermal conductivity may be greatly reduced
in comparison to the step function. Furthermore, since
the ramp forced system does not degenerate to a
steady-state, longer experimental times are also
possible. Accurate and precise generation of a ramp
function as well as transient temperature
measurements of the wire can be accomplished at
relatively low cost.

Under a Department of Energy (DOE) sponsored
research contract, a system for measuring the thermal
conductivity of synthetic liquid fuels at a temperature
range of 300560 K and a pressure range of 1-100atm
has been designed and constructed. This system
employs a ramp heat generation function. A brief
description of the system, along with a sample test on
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liquid toluene is presented in order to illustrate the
merits of the technique.

In this paper, we have mathematically investigated
the above three forcing functions to determine which
might be the most promising for transient analysis. It is
concluded that the ramp function has several
advantages as a forcing function. Based on this
conclusion, a detailed analysis of a ramp perturbed
system has been conducted to determine the deviations
from the ideal mathematical model. These studies have
been used to establish design criteria to minimize
experimental error and provide a method for
correcting the apparent thermal conductivity for the
residual errors.

2. EXPERIMENTAL VERIFICATION

In the experimental technigue employed by this
group of investigators, a ramp power forcing function
is used to heat a platinum wire (r,, = 6.35um) 0.14m
long. The ramp is generated using a digital power
supply controlled by a microcomputer. The wire
resistance change is measured by a Wheatstone bridge
and a series of amplifiers. Time measurements are
made accurately by the computer crystal clock. A
typical experiment requires 1-5s and yields 1022 data
points which are statistically analyzed to obtain the
thermal conductivity based on the model presented in
this paper.

From the mathematical model of the ideal line-
source described in the forthcoming sections, it is
apparent that a plot of 8/t vs In (¢} would result in a
straight line with its slope proportional to the thermal
conductivity of the fluid under consideration. Such a
plotis presented in Fig. 1 which illustrates raw data for
liquid toluene at 299.35K. The apparent thermal
conductivity value obtained over the time interval of
01-5s is 0.126 Wm 'K~ as compared to the
corrected value of 0.129 Wm ™! K ™! reported by Mani
[9].

Experimental work is currently under way to
achieve an accuracy of better than 2°; in the thermal
conductivity measurement.

3. THEORY OF THE TRANSIENT
HOT-WIRE TECHNIQUE

The transient hot-wire cell consists of an electrically
heated fine wire suspended vertically in the fluid
medium for which thermal conductivity i1s to be
measured. The fluid is contained in a cylindrical
enclosure and maintained Initially at a constant
temperature. The transient behavior of this hot wire is
idealized by the solution of the transient one-
dimensional pure conduction problem involving an
infinitely long line source subjected to a time variant
perturbation situated in an isotropic fluid, infinite in
extent and initially in local thermodynamic
equilibrium.

3.1. Ideal mathematical model
The simplest mathematical description of the non-
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FiG. 1. Experimental values of transient temperature rise for liquid toluene at 299.35K in a ramp forced
thermal conductivity instrument.

steady-state hot-wire cell is given by the line-source
solution of the conduction equation

oT s aZT+,1 oT "
o | oy or
1C. T(,0) =T,

BC. (1) lmT¢,0)=T,

aT

2) - 2nrk,5 = ¢(1).

fe—er,

The input function g(t) represents the rate of heat per
unit length of wire. The general solution to any forcing
function may be written in general terms using the
convolution integral theorem as

t

1 — X\ du
Tt — Ty = 4};k—f J'O g{t — ujexp (@); 2)

3.1.1. Dirac function. For the Dirac function g(t — u)

= §(t — u) where § represents the heat content of the
pulse. The solution is

Ty = Ty = -9 ex —r 3
’ 0—41rkf£ep 4ot )’ ®)

For large t:

and small ;10 = To=dfdnk,t (@)

For the Dirac function, the solution shows that at any
fixed radial coordinate the thermal conductivity may
be determined from the slope of a plot of AT vs 1/t
when 1 is large (exponential goes to unity) provided §is
known. Thus, for large times the straight line may be
used to deduce the thermal conductivity and also as a
criteria for the conformance of the system and model.

3.1.2. Step function. For the step function q(t — u)
= ¢. The magnitude of the step is represented by 4. The
well-known solution (10) is therefore

2
g r
_ E | —
4nk, (cm) )

where E, represents the first exponential integral.

T(r,t) — To =

E;(u)=fme‘“£i—tf. 6)
u

u

For long times, the first exponential integral may be
expanded and the series truncated.

Bott 2 272
E\(*/4at) =—y + In (riz) + ( 4%?) +0 [&;T} (7)

where O represents the accumulation of higher-order
terms. The resulting solution for long times is



674

4ot
T(r,1) — Ty = 4Tj’k—ln (;7;) (8)
I . y

In the case of the step function, a plot of AT against In ¢
provides a method of establishing the thermal
conductivity based on a knowledge of 4.

3.1.3. Ramp function. For the ramp function,
q(t — u) = G(r — u). In this case § represents the slope
of the ramp. The convolution integral gives the
following solution

T(?‘ 3) — TO o ,“4,{__ El (”ri;)
’ dnk, | 4ot

rZ
()] o

As in the previous cases, the solution may be simplified
for long times to give

T(r,r)~—T0: g | (40:!)

e i i e e n ettt
t 4nk, \r’D

2
_ — 2 .
exp(— r*/dat) + (40")

“ 7

(10)
For the ramp function, a plot AT/t against Int
provides the criteria for establishing k.

3.2. Discussion of experimental methods

Each of the forcing functions considered has some
potential merit for measuring thermal conductivities
of fluids. However, each also presents experimental
difficulties.

3.2.1. Dirac function. The Dirac function represenis
the simplest forcing function which may be employed.
Based on current electronics, there is no extreme
difficulty involved in generating this function with
extreme precision for modest power levels. In
principle, the Dirac function has a number of
important advantages: firstly, the heat input to the
system is small, thus free convection and radiation
effects are insignificant ; secondly, the duration of the
experiment is such that many experiments can be run
within a short time.

A major disadvantage of the Dirac input involves
the measurements required to deduce the thermal
conductivity. At the moderate power levels used in
solid-state circuits, the maximum temperature rise
which occurs in a typical cell is on the order of 0.05 to
0.5K ; this rise occurs at times of the order of 0.01 ms.
For times when the temperature—time response may
be plotted in a linear fashion, the observed AT
estimated from the simple model is on the order of
107 1-107 5K and occurs between 1 and 100ms for
most fluids. Table 1 presents some calculations for
nitrogen and toluene using the Dirac function.

The inability to accurately measure the small AT
responses will limit the accuracy of the thermal
conductivity which may be obtained using the pulse.

3.2.2. Step function. The step function has been
employed by the previous researchers for both gas
and liquid thermal conductivity measurements.
Application of this model represents the state of the art
in thermal conductivity measurements. Many of the
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correction factors for the additional heat transfer
contributions to the apparent thermal conductivity are
presented by McLaughlin and Pittman [11], and by
Healy er al. [12].

The step function has several limitations which
restrict its usefulness. In the application of the step
input, the system is strongly perturbed at short times.
The majority of the temperature increase takes place at
very short times and is not useful in the analysis. For a
typical power input, and a cell wire-resistance of 1000,
Table 2 indicates the temperature rise as a function of
time. The lower time represents the initiation of the
linear portion of the AT-In ¢ plot while the upper time
represents the time of departure from linearity due to
the onset of steady-state. The total resistance change is
0.20Q over the useful range of the experiment even
though the total resistance increase is on the order of
0.53Q. Thus, less than 407, of the total resistance
increase is used in the measurement. If the sensitivity is
to be improved, a higher power level should be
emploved. However, this will create a larger initial
temperature rise and increase the effect of natural
convection and radiation on the heat transfer from the
wire surface. Sensitivity may also be increased
somewhat by going to thinner wires for which the
resistance per unit length is greater.

At longer times, the onset of steady-state limits the
duration of the experiment. For gases, this is important
as this time is generally on the order of 600 ms. For
liquids, the time is much longer and generally does not
represent a limitation of the technique.

3.2.3. Ramp function. The ramp function possesses
several unique qualities which make it useful for
thermal conductivity measurements. The only major
drawback to its use is the requirement of a precision
function generator capable of producing a current
which varies as the square root of time. However,
highly accurate generators may be readily constructed
using solid-state electronics.

In employing the ramp function, the power level
increases with time. Thus, at short times when the
model equation cannot be plotted in a linear fashion,

Table 1. Typical operation of a hot-wire thermal conductivity
for several fluids using a Dirac input

Nitrogen (gas), 1 MPa, 289K

AT, K, wire surface Time, ms
1.82% 0.003
0.014 1
0.0014 10
0.00014 100
Toluene {liquid), 0.1 MPa, 289K

0.013* .08
0.003 i
0.0003 10

0.00003 100

*Maximum temperature.
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Table 2. Typical operating data for a step input for toluene at
ambient (g = 0.320Wm™ )

Time, ms AT, K AR, Q
100 1.23 0.325
300 1.45 0.383
600 1.58 0.418

1000 1.69 0.447
2500 1.87 0.494
4000 1.96 0.518
5000 201 0.531

the power level is low and the temperature rise is small.
Additionally, the ultimate temperature rise and
experiment duration may be controlled by varying
both the power level applied to the ramp generator and
the gain, thus permitting free convection and radiation
effects to be minimized or eliminated. Since the ramp
forced system does not degenerate to a steady-state,
longer experimental times are also possible.

This may simplify the time measurement
significantly. Table 3 presents typical operating data
for a ramp input for toluene. At short times during the
initial stabilization of the measuring circuit (in the
order of 60-100 ms) only 12 % of the overall resistance
change occurs; the remaining 88 % can be utilized for
the thermal conductivity measurement.

Therefore, the ramp heat perturbation has
significant advantages over the Dirac and step
functions and the remainder of this paper will deal only
with this type of heat generation function.

4. ANALYSIS OF APPROXIMATIONS TO
THE IDEAL LINE-SOURCE MODEL
FOR RAMP PERTURBATION
The ideal line-source model only approximates the
response of the actual cell. A variety of factors which
might effect the temperature response of the wire must
be considered.

4.1. Truncation error

This error arises from the truncation of the E,(u) to
obtain the long time solution. The ideal line-source
solution given by equation (10) is

AT 3§ 1 1 1
2 4 el _eumn [ L
P 4nkf{ ‘(41) € +(41>E1(4r)]
(1)
where

E(i)~ In(4 ! 0 Ly 2
14t = —y+ n(t)+5;+ [(&;)](1)

O represents the accumulation of higher-order terms,
and t = at/r2D.

For very thin wires the terms in equation (12) of
order (1/7)* and smaller may be ignored. Substituting
the above expression into equation (11) and
comparing with the long time solution yields the
following equation for truncation error

MY 2434 - H

SAT 1 4z , 4z
— =¥ il L e-tianga [T
AT <4t)(2+ln(9)>+1 € /ln(D).

(13)

At ambient conditions, using a wire with a radius of
6.35 um, for a typical case of methane at time 100 ms,
the truncation error equals 3.6 x 1072 %, For toluene
under similar conditions, the error is about 0.259%.
Since the error is inversely proportional to time, a
starting time may be selected for which the truncation
error is insignificant.

4.2. Non-uniform wire radius

Considering the ideal line-source solution for a
ramp forcing function [i.e. equation (10)], as long as
the rate of energy supply per unit length remains the
same, the temperature history at any given radial
position in the fluid is independent of the radius of the
wire. Following Healy [12] we conclude that the
thermal conductivity can therefore be estimated at
r—r,, without expending much effort to insure
accurate cylindricity of the wire. It should be noted
that periodic fluctuations in the wire radius on a scale
comparable to the wire radius may contribute to
deviations from the ideal line source. The magnitude of
this deviation cannot be readily predicted, since the
conductive boundary condition contains a varying
flux angle. In practice the wire should be examined
optically to assure uniform cylindricity. Very uniform
drawn wire with a radius of as little as 6.35um
{1/2000") can be obtained from commercial suppliers.
The cell wire which is currently being used in this
laboratory is of this type.

4.3, The effect of finite wire heat capacity

The transient one-dimensional equations of energy
for the hot wire and the fluid surrounding it along with
the appropriate boundary conditions are

dT,, q  k,[oT
"wcw<“&f*>-w;;(ar

oT 32T 1/8T
"fcvf('éﬂ:"f[a?*;(aﬂ] 13

(14)

and

Table 3. Typical operating data for a ramp input for toluene
at ambient (§ = 0071 Wm™ s 1)

Time, ms AT, K AR, Q
100 0.023 0.006
300 0.083 0.022
600 0.184 0.049

1000 0.330 0.087
2500 0.924 0.224
4000 1.560 0.412
5000 2.000 0.528
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with B.C.
t<0 T,=T=T,
120 r=o,T=T,
t20 r=r,T,=T

where subscripts w and f represent the wire and fluid,
respectively.

Equations (14) and (15) were transformed to
dimensionless groups and solved numerically. The
space derivatives were approximated by a second-
order correct Taylor series expansion about the center
points, with the exception of the boundaries, where
both forward and backward differences were applied.
The tridiagonal matrix resulting from equation (15)
was solved at each time interval using the Thomas
algorithm. All implicit time derivatives were
approximated to first-order accuracy, which
necessitated relatively small time-steps.

The finite difference model solutions neglecting and
considering wire heat capacity are shown to agree with
the analytical solutions (10) in Fig. 2 for a step change
of heat in a system using helium with the outer cell
dimensions specified by DeGroot et al. [2]. For the
purpose of testing the model, a wire of radius 25 um
was chosen. This size probably represents the largest
wire size an experimenter would consider due to wire
resistance considerations and, because of the wire
mass, represents a case where the wire heat capacity
effect is very important.

The finite difference model was also compared with
the analytical solution for the ramp heat input
function, neglecting wire heat capacity. Using a typical
fluid, toluene, the numerical and the analytical
solutions for the simple ideal line-source agree to
within 19,. These solutions, therefore, bracket all
situations of importance. The excellent agreement
suggests the numerical model is generally applicable.

The finite difference model was used to investigate
the wire heat capacity effect for a ramp heat input
function. Using toluene, the heat capacity effect is
undetectable for a wire with a diameter of 5 um when
the heat is input at a typical experimental rate of
0.0283 Wm™!s~ L. For the same heat input, but with
an order of magnitude larger wire, the heat capacity
effect causes about 29 error in the slope of AT/ vs
In(t) plot. For modest wire diameters, the wire heat
capacity effects are large at short times but decrease
rapidly as time progresses. Figure 3 illustrates the
time-dependent nature of the heat capacity induced
error for liquid toluene. Finally, it should be noted that
the ratio of the product of the density and the heat
capacity of the fluid to that of the wire (ie
=p,C//p,C,) is the controlling parameter in the
generation of the error in thermal conductivity. If @
=1, then the effect of finite heat capacity is
insignificant at all times. For liquid toluene (w = 0.5)
the maximum value of the correction is 049, at
= 950, but for gases such as methane where  can be as
low as 0.05, the correction is in the order of 5-7%,.

4.4, Bounded media

For a step heat generation function, McLaughlin
and Pittman [11] bhave modified the boundary
condition at the inner cell wall (ie.atr = b, T, = T,)
and have resolved the transient conduction equation.
For b/r,, » 1 (b is the inner cell radius) the difference
between the asymptotic form of the solution originally
derived by Fischer [13], and the ideal line solution is
obtained. Numerical solutions for various values of
b/r,, and 1 yield the percent error of the hot-wire
temperature due to wall effect. Similar analysis by
Healy et al. [12] resulted in a criterion for
determination of the inner cell radius, based on
minimization of the difference between the ideal line-
source solution and the one from the modified
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F1G. 3. Heat capacity effect for liquid toluene at ambient condition in a ramp forced system.

boundary case. This criteria (b*/at > 5.783 ...)
confirms the results of McLaughlin and Pittman [11].
Healy’s method of solution is utilized for the case of
ramp power generation input. Using Duhamel’s
integral technique [14], the temperature profile
resulted from the modified boundary condition is
obtained for the ramp perturbation as

-8 ) [ (-]

(16)

where A = g2; a/b?, and g, denote the roots of J4(g,)
=0 (g, = 24048, 5.5201, 8.6537, 11.7315, 14.9309 ...).
The solution of the ‘ideal line-source can be

rearranged as
g b 4at
21 thh i (17
47"‘1{ " ("w> " (bz >] a7

Therefore, an outer-boundary correction can be
obtained as
—e"")].

(18)

AT\p. =

"Yoldn)

=45k!‘[ (40‘[) ‘i

By selecting an appropriate bound on the value of
b*/at one can establish an order of magnitude
limitation on SAT/AT, so that it contributes an error
of 0.01% or less to thermal conductivity.

The numerical solution of the above equation, with
Bessel functions generated from a polynomial
approximation (15) and the roots of J,(g,) taken from
standard tables [16] for the first 50 terms, gave a
criterion b*/at > 3.120. This compares favorably with
the value of b*/at = 5,783 for the same error size with a
step function. The experiment with the ramp input
may be run almost twice as long as the step without the
outer boundary correction. When the outer boundary

correction is made, the size of the correction may be
determined by equation (18).

4.5. Knudsen effects

Since very thin wires are employed to reduce the
correction due to their finite heat capacity, it must be
expected that Knudsen effects may be important at the
lower densities where the mean free path in the gas
becomes of the same order of magnitude as the wire
diameter. For a uniform heat input to the wire Healy et
al. [12] have shown that the principal effect, to the first
order, is a shift in all points on the AT vs Int diagram
by a constant amount without changing the slope, i.¢.
the reported value of k,. At lower densities, second-
order corrections are more significant and need to be
considered. For a typical case of helium at 1 atm and
room temperature, Healy et al. [12] reported that the
Knudsen effect results in a 0.3% error in k, for a wire
with r = 2.5 um.

The Smoluchowski equation (17) may be used to
describe the difference in temperature between the
fluid and wire due to Knudsen effect

aT
Tw(run t} - T(rwx I) = - !/»" (E) (19)

rer,

In equation (19) T, is the wire temperature, T is the
temperature of the adjacent gas and v is an empirical
factor proportional to the mean free path of the gas.
No reliable measurements of this factor are available.
Using the following boundary condition

oT
~27trwkf(a—) = (il
T Jr=r,

T, — T= gty /2nk,r,, @21

The modified solution for the ideal line-source
subjected to a ramp input, to correct first-order is

AT, = AT+ (T, — T) = 4—%{1;1 (:‘“;) + 2"”]
J
(22)

(20)

we obtain
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Equation (22) shows thai the principal effect of the
Knudsen temperature jump is to shift the curve of AT/t
vs Int without changing its slope. Secondary effects
will be much less than 039 since the gradual
temperature increase in wire results in a negligible
temperature jump even at low densities.

4.6. Axial conduction

Heat is lost from the wire both radially to the
surrounding fluid, and axially to the supporting ends.
The axial conduction effect therefore results in a
modification of the transient temperature profile of the
ideal line-source since the profile becomes a function of
both axial position and time. In order to determine the
effect of this modified temperature profile and the
thermal conductivity of the fluid, a comparison is
made between a finite length of a fine wire bounded by
infinite conducting media at both ends, and a finite
length of an infinitely long wire.

Consider a perfectly cylindrical wire with a finite
length bounded by two infinite conducting media. The
wire is heated internally due to the passage of a current
I'and is cooled by loss of heat to the surrounding fluid
with an interfacial conductance coefficient H,, which
for simplicity is assumed to be constant. (Note that in
the real situation Hy = f(T).) Heat is also lost to both
ends through the axial conduction mechanism. One
can obtain an indication of the importance of axial
conduction by comparing the solutions for the infinite
wire and the bounded wire.

The governing differential equation and boundary
conditions for this idealized situation, in dimensionless
form, are as follows

ae, 0,

= H, -0+ 0 (23}

it z?

with boundary conditions

0,=0 at 1,=0

0,=0 at Z=0 and Z=Ljr,

The solution to the above differential equation for a
ramp heat input perturbation is given by

1t sinh uZ + sinh (L. - Z)
Bz = | =TT
ToH P sinh ul
4GLA p* = ( ( B, ﬂ
B 1 — exp(— 4,0} —=-
TEHOPT()HZI [ P ]\CnAn/_
(24)
where A,=H +a,2n— 1) (z/L’: B,=sin

[@n— D=nZ/L]): and C, = (2n—1) [(2n — 17
w+ LAt

In the case of the infinite line-source with axial
conduction, the transient temperature profile is de-
scribed by
(25)

with boundary condition
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0,=0 at 1,=0.

The solution to the above differential equation for a
ramp heat input is given by

The integral average wire temperature at time 7 13
defined by the following equation

Ler,
f.(t) = [

J O

D(Z,0dZ.

(27

Equation (24) was numerically evaluated with different
parameters comparable to typical experimental cases.
The differences between the thermal conductivity
obtained using #,, and the one using 8, was found to be
negligible, for a typical experiment, using a wire with
radius 6.35 um and length greater than 0.1 m. For
shorter wires the error was larger, though still neglig-
ible (ie. for L= 005m, error in slope, 0.16%,). For
design purposes, the error due to axial conductionfora
wire with a radius in the order of 6.35 um is negligible
for any length greater than 0.10m. For very accurate
measurements one might utilize the well-established
experimental technique of employing a compensating
wire to reduce the predicted error by orders of
magnitude. Details of this technique and the approp-
riate working equations are presented by de Castro et
al. [18], and by Anderson er al. [19].

4.7. Free convection

In previous studies the onset of convection has been
estimated for a finite length of a semi-infinite vertical
wire subjected to a step change in heat input. It has
been shown [20] that the initial part of the transient is
tocally pure conduction with a transient one-
dimensional temperature field. This regime is termi-
nated at any particular point in the vertical coordinate,
by the leading edge of the fluid molecules moving
upward with velocities determined from the one-
dimensional analysis. Mani [9] has estimated the
maximum penetration distance of the leading edge
effect for a step change in heat flux for both one-
dimensional and two-dimensional cases. Other tran-
stent natural convection studies in relation to thermal
conductivity measurements, have generally used the
leading edge analogy [11]. Since the prediction of the
thermal conductivity is based on the transient tem-
perature profile at the wire—fluid interface, a more
correct criteria for free convection effects should
involve the transient integral average wire tempera-
ture. The experimental study of Pantaloni er al. [21]
also suggests that the onset of convection is related toa
vertical component of the thermal gradient. In the case
of the ramp perturbation the dynamic process is
governed by the following momentum and energy
equations which are simplified by the Boussinesg
approximation [22] and by the boundary-layer
assumption
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Initial and boundary conditions are:
forall Rand Z,7 <0

U=V=0=0 atZ=0,allR, t>0

at Roo,all Z,7>0
U=V=0,atR=1forall Z,7>0

9 g all Z, > 0.

OR |g=y 210
These conditions are consistent with previous studies
[9] and only differ on the forcing function. A numerical
solution to the partial differential equations (PDES)
was developed based on the method of lines for one
spatial variable and forward difference for the second
spatial variable. The method of lines uses a finite
element collocation procedure with piecewise poly-
nomials as the trial space for the descretization of the
spatial variable [23]. The forward difference pro-
cedures reduce the PDE system to a number of PDES
in one spatial variable which are then reduced to a
semi-discrete system of ordinary differential equations
which only depend on time. The time integration is
then accomplished by use of slightly modified standard
techniques [24, 25].
The temperature profiles are obtained as

0=f(RZ7)
and the integral average temperature profile at the wire
surface is obtained as

6.(R,7) = J 0dZ/Z |p-, (31
0

from the ideal line source model a plot of 8/t vs Int
gives a straight line with its slope proportional to the
thermal conductivity. It is expected that a similar plot
using 8, as the wire temperature will give a straight line
at short times and will show a change to a lesser stope
at the onset of convection. A plot of 8,/ vs Int for a
typical case of methane at 300K and 5.0 MPa is shown
in Fig. 4. As it is seen, at short times a straight line is
obtained. The criterion for onset of convection is
determined by deviation from linearity of by more
than 0.1 9] (change in slope). This point is defined as 7*
on Fig. 4. By varying the slope of the ramp, Prandt
and Grashof numbers a series of curves representing
the time for the onset of convection as a function of
dimensionless heat parameter Q* are developed and
are presented in Fig. 5. The dimensionless heat para-
meter Q¥ is equivalent to 6Nu*/tNu where Nu* and
Nu are Nusselt numbers; the former is based on the
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F1G. 4. Separation of the transient two-dimensional from
transient one-dimensional solutions in a ramp forced system.

radius of the wire, and the latter is based on the thermal
boundary layer thickness. These curves, in the order of
increasing Rayleigh number represent methane at
300K and 5.0 MPa, toluene at 300 K and 0.1 MPa, and
SRC-IT (coal derived) naphtha No. 1046 at 310.8 K
and 0.1 MPa, respectively.

By specifying the slope of the ramp ¢, and the
physical parameters of the system, one can obtain the
time for the onset of convection from Fig. 5. The
temperature rise of the wire at the time of the onset of
convection can be obtained from Fig. 6 which is a
graphical presentation of the ideal line-source solution
for different Prandtl numbers. A more simplified
method of presenting the onset of convection can be
shown in terms of a modified Rayleigh number which
expresses the transient radial temperature profile as
follows:

R,(t) = [(Bg/vw)] 67 AT (r, 1). (32)

The thermal boundary layer thickness is assumed to be
given by

6= ¢/ (ar) (33)
)
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F1G. 5. Onset of convection in a medium surrounding a
vertical line source subjected to a ramp heat input
perturbation.
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F1G. 6. Transient one-dimensional conduction in a thermal
conductivity cell subjected to a ramp heat input perturbation
—- the effect of Prandtl number.

where ¢ is a numerical factor. By substituting equation
(10) in equation (32) we obtain

3 12 5 -
R, (1) = [d) [ﬁga]"*qﬂ ]ISQ In (4TV } (34)
v dnk, DpP,

According to Pantaloni et al. [21], the experimental
values for the onset of convection from a vertical wire
immersed in three different liquids and heated with a
step change, resulted in a unique value of the Rayleigh
number [ie. R, (t*) ~ 30¢>]. Pantaloni did not extend
this analysis to vapors and gases.

For the ramp heat input, the free convection equa-
tions result in approximate Rayleigh numbers defined
by equation (32), of 58¢3, for liquids and 390¢* for
methane gas. Furthermore, a strong dependency of the
Rayleigh number on § at low heat input levels is
observed. These observations suggest that the use of
the modified Rayleigh number with a constant numeri-
cal factor is insufficient in describing the transient
behavior in a ramp forced system. Referring back to
Fig. 5, the obtained Rayleigh numbers of (58¢)*) and
390¢°), approximately describe the intermediate re-
gion (ie. 20x 107% < Q* < 80 x 10~ ¥). Substituting
these Rayleigh numbers in equation (34) yields equa-
tion (35)

*
*32]n F:ZMD] = EPra’ {k,/fgd) (35)
where ¢ = 730 for liquids and & = 4900 for gases.

As an example, equation (35) with heat input at a
rate of 566 mW m~ ! s~ ! gives a time for the onset of
convection for methane, toluene and SRC-II naphtha
as 0.7s, 1.7s and 7.3s, respectively. Experimental
results of Pantaloni et al. [21] for the same overall heat
input for a step function gives a time for the onset of
convection of 1.3s for toluene.

As a result of this analysis a typical set of operating
parameters for thermal conductivity measurement are
presented in Table 4.
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4.8. Rudiation effects

Physically some of the energy is radiated away from
the hot wire due to the temperature difference between
the wire and surroundings. The radiated energy is
partly absorbed by the fluid, whose absorptivity is
strongly selective with respect to wave length and
partly absorbed and re-emitted from the outer cylin-
der. In the case of a step change in heat input, Mani [9]
has presented a complete analysis of approximations
of the radiation contribution to the apparent thermal
conductivity.

Radiation effects of a ramp heat input to the wire can
be obtained by modification of the step heat input
analysis.

Conservation of energy in a stationary radiation-
participating medium in local thermodynamic equilib-
rium is described by equation (36)

Y - arv 3
f P Ot El
where
q q. q,

q. and g, represent the conductive and radiative
contributions, respectively.

In evaluating g¢,, three different radiative regimes
should be considered :

(a) Perfectly opaque fluid : the radiative component
g, = 0, and therefore, no correction is required.

(b) Transparent fluid: the amount of energy radi-
ated is given by Horrocks and McLaughlin [26] and
simplified by Healy et al. [12] as

g, = 2nr,o(TE — Té) =~ 8o o THAT,. (37}

The radiation loss modifies the lines source solution
and is equivalent to a reduction in T(r,.t) by the
amount.
, 8nr, o1
o= Ay = Bwo T
q

. [AT(r,.1)]* (38)
The above conditions are satisfied in measurements on
dilute gases in the thermal conductivity cell. The
correction is negligible due to small temperature
differences and small radius of the wire.

(c) Partially absorbing fluid : in this case the heat is
absorbed by the fluid depending on its optical thick-
ness T, which is defined by the relation

iy = K,E (39)

where K, is the mean extinction coefficient for radi-
ation and E is a characteristic dimension. The mean
extinction coefficient is defined by
oy

I(T)d§

1S

K, = ( Ky(T)d§ | (40)
) 0 o

where I is the black body radiation intensity for the
frequency § and Ky is the extinction coefficient for this
frequency.
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Table 4. Simulated parameters for the thermal conductivity measurement in a ramp
forced system

Fluid T, K P, MPa g, Wm's™! t*, s AT*, K
Methane 300 50 0.03 2.1 14
0.07 1.5 2.2
0.566 0.7 7.6
Toluene 300 0.1 0.40 20 4.1
0.566 1.7 4.8
0.80 1.5 59
SRC-II 300 0.1 0.10 14.5 89
0.20 110 13.1
0.566 7.3 236

ry = 6.35%x107%m.

4.9. Optically thick approximations
Forastrongly absorbent fluid (7, > 1) theradiative
transfer can be treated as a diffusional process

q,= —k,gradT

where ¢, is independent of the cell geometry and k, is
constant which depends on the optical properties of
the fluid. Poltz’s [27] expression for g, in an optically
thick plane parallel layer is valid for the present cell
configuration

1672
q = [—nGT8:| grad T a1)
3k
and
16n°
k= oT3. (42)
3k

dat(1 + A)
2D

The solution of the energy with ramp perturbation can
be simplified as

0 u

o1 n + } 43)
where A = g,/q..

It can be shown that for strongly absorbent fluids
the apparent thermal conductivity may increase to
about 8 % above its radiation-free value.

4.10. Optically thin approximation

For 7, « 1, there is negligible self-absorption and
ths fluid exchanges radiation directly with the bound-
ing surfaces and not with itself. The influence of the
bounding surfaces is more pronounced in the paraliel
plate or co-axial cylindrical geometry than in a hot-
wire method. The surface area of the emitter is small
compared to the volume of the thermally disturbed
fluid and the medium beyond the boundary layer and
the outer wall act as black bodies.

The optically thin approximation is similar to the
transparent regime assumption in the hot-wire cell and
hence negligible correction.

4.11. Intermediate regime
In this regime each fluid element exchanges radi-

ation with other fluid elements as well as with the
bounding surfaces. The fluid adjacent to the wire
though absorbs radiation emitted by the wire surface
receives back only a small proportion of its own
emitted radiation unlike the fluid away from the wire.
Therefore, at large values of time and for small
Bouguer number (BU = «r,, « 1) (28), the fluid close
to the wire is always optically thin, away from the wire
it is optically thick, with transition in the intermediate
region. The radiant heat flux at the wire is approxi-
mated as

4
%

Values of R have been approximated by Mani [9]
and by Saito and Venart [29]. Aside from the basic
assumptions of small radiative contribution, grey body
absorption, and additive radiative and conductive
fluxes, these analyses differ in two respects. Mani’s
analysis of the internal zone is algebraic and based on
an optically thin limit, whereas Saito and Venart’s
solution is numerical using a modified integral method
without this assumption. Furthermore Mani assumed
that the emissivity of platinum was unity. Based on the
above discussion, it is evident that the numerical
values of R differ in both analyses. Since all transient
hot-wire cells are fitted with a platinum wire (emissi-
vity 0.037), the Saito and Venart analysis for
evaluation of R, is more appropriate.

Rearranging equation (43) we get

O 4 \naae(1 + ayr2Dynea,
t Ak,

A=

16n% T3] _
=[~1i”i—9]R(r,Ka,rw,s). (44)

mk,

(45)

A plot of 8/t vs In(1 + A)t*'** gives the radiation
free value of the thermal conductivity.

For similar heat input to the wire, at short times
when the temperature rise for a ramp forced wire is
considerably less than the one for a step forced case,
the radiative contribution will be considerably less. At
large times, however, the radiative contribution may
become higher for the ramp depending on the actual
temperature difference.

Typically for toluene at 25°C (7 = 1.5,k = 35cm™ 1)
the radiative contribution to the apparent thermal
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conductivity is 0.3%,. The radiative correction in-
creases at higher temperatures and longer times. This
suggests that a radiation free value for the thermal
conductivity can be obtained by extrapolating the
obtained time variant thermal conductivity values to
time zero.

In conclusion, it is apparent from the above dis-
cussion that a radiative correction in a typical thermal
conductivity cell is only needed for fluids with mod-
erate and high optical thicknesses and then only if the
maximum temperature rise exceeds 2--3 K.

SUMMARY

Three heat generation forcing functions (step, Dirac,
and ramp) for use in the transient thermal conductivity
technique are evaluated. It is shown that the ramp
function offers several advantages over the step and
Dirac functions. For the idealized model of a vertical
line source subjected to a ramp perturbation source
the thermal conductivity is obtained from the slope of
the AT/t vs Int diagram. Analytical and/or numerical
solutions to the deviations from the ideal line-source
model for the ramp have been given. These include
truncation error, non-uniform wire radius, heat ca-
pacity effect, bounded media, Knudsen effects, axial
conduction, free convection and radiation. These
deviations can be used to design a ramp driven thermal
conductivity system such that negligible corrections to
the raw experimental data need be made. Therefore,
with appropriate cell design, the thermal conductivity
can be deduced directly from the ideal line-source
model. Work currently underway to apply these
results will be reported in a separate article.
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MODELE MATHEMATIQUE D’UN INSTRUMENT DE CONDUCTIVITE
THERMIQUE A FIL CHAUFFE SELON UNE RAMPE

Résumé—On étudie le modéle fondamental et ses corrections pour la détermination absolue de la

conductivité thermique de fluide a partir de la technique du fil chaud en régime variable. On présente des

solutions analytiques pour trois fonctions de génération de chaleur (Dirac, échelon, rampe). La fonction

rampe offre plusieurs avantages sur la fonction échelon qui est courrament utilisée par les expérimentateurs.

Des expressions pour les corrections du modéle idéalisé d’un systéme avec rampe sont présentées en ce qui

concerne : leffet de capacité thermique, 'erreur de troncature, le rayon non uniforme du fil, les frontiéres du
milieu, I'effet Knudsen, la conduction axiale, la convection libre et le rayonnement.

EIN MATHEMATISCHES MODELL FUR EIN HITZDRAHT-WARMELEITFKHIGK}_EITSMESS-
GERAT, DESSEN AUFHEIZUNG NACH EINER RAMPENFUNKTION VERLAUFT

Zusammenfassung—Es wurden das Grundmodell sowie Modellkorrekturen zur absoluten Bestimmung der
Wirmeleitfahigkeiten von Fliissigkeiten mittels einer instationdren Hitzdrahtemethode untersucht. Analy-
tische Losungen fiir die Wirmeerzeugungsfunktionen (Einheitsimpuls, Sprung, Rampe) werden angegeben.
Die Aufheizung nach der Rampenfunktion hat mehrere Vorteile gegeniiber der Sprungfunktion, die
aligemein von den Experimentatoren angewandt wird. Es werden Ausdriicke fiir die Korrekturen des
idealisierten Modells eines mit der Rampenfunktion betriebenen Systems angegeben, und zwar fiir den
EinfluB der Warmekapazitit, des Abbruchfehlers, ungleichformigen Drahtdurchmessers, endlicher Medien,
der Knudsen-Effekte, axialer Leitung, freier Konvektion und Strahlung.

MATEMATHUYECKAS MOJEJIb U3MEPUTEJIA TETNJIONMPOBOAHOCTH,
MMOCTPOEHHOI'O HA OCHOBE METOJA HATPETONU HUTHU, HA KOTOPVIO INOJAETCA
MUJIOOBPA3ZHOE HATPAXEHHUE

Anvoraumas — Mccnenosanack Mojenb, pa3paboTaHHas [UIA OfpeAeieHHs TEMIONpPOBOAHOCTH XHI-
KOCTH HECTALMOHAPHBIM METOJOM HArpeToi HHTH. [1peacTaBiiesbl aHANMTHYECKNE PELUEHHA WU TPeEX
¢dyHkuMit TensioBbigeseHua (byHkunu JInupaka, cTynenuaToit u nunoobpasuoit). Iokasano, 4to nuio-
obpa3Has (YHKIHS TEIUIOBBIAEICHHS HMEET HEKOTODhie MPEHMMYINECTBA HAll CTYNEHYaTOH, OGbIMHO
HCIIOJIb3YeMOit DkCcnepUMeHTaTOpaMH. [TpecTaBieHbl BHIPaXEHHS IR ONpeNe/ieHHs NONPaBOK K Hae-
ANM3MPOBAHHON MHIO0OPAa3HON MOJEIH, KOTOPBIE YYHTBHIBAIOT: JPDEKT TEMIOEMKOCTH, OLWHOKY
BCJIEAICTBHE OTOPACBIBAHHS 4JIEHOB YPABHCHH#, HEOJHOPOAHOCTb HHTH MO PAJAMYCY, OTPaHHYEHHOCTh
cpeasl, 3¢dexTsl KHyAceHa, aKCHANLHYIO TEIIONPOBOLHOCTb, CBOOOIHYIO KOHBEKLMIO U H3JlyYeHHE.
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