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Abstract - The fundamental model and model corrections for the absolute determination of fluid thermal 
conductivity using a transient hot-wire technique were studied. Analytical solutions for three heat generation 
functions (Dirac, step and ramp) are presented. The ramp heat generation function is shown to offer several 
advantages over the step function, which is currently used by experimenters. Expressions for the corrections 
to the idealized model of a ramp forced system are presented for: heat capacity effect, truncation error, non- 
uniform wire radius, bounded media, Knudsen effects, axial conduction, free convection and radiation. 

NOMENCLATURE 

ratio of radiative to conductive heat flux ; 
outer cell radius [m] ; 
specific heat [W s kg-’ K-“] ; 

ew(d ; 
w(l + ~1; 
characteristic dimension; 
exponential integral; 
gravitational acceleration [m s-‘] ; 
Bessel function; 
interfacial conductance coefficient 
[Wm-2Ki1]; 

(Ho P/n@; 
black body radiation intensity; 
thermal conductivity [W m-l K-l]; 
mean extinction coe&ient ; 
wire length [m] ; 
accumulation of high-order terms ; 
wire perimeter (27~~) [m] ; 
heat flux [Wm-‘I; 
heat content of a pulse; 
slope of the ramp [W m-l s-l]; 

ql(akTo); 
cjr~/kTo ; 
radial position ; 
wire radius [m] ; 
(+-w) ; 
area (nr$) [m2] ; 
time [s] ; 
temperature [K] ; 
axial velocity [m s- ‘1; 

ur,/v ; 
radial velocity [m s- ‘1; 

vf-dv ; 
Bessel function ; 
axial position ; 
zlr, ; 
Bouguer number, w, ; 
Prandtl number; 

*The author to whom correspondence should be made. 

Gr, Grashof number, [g/?r~7’o/v2] ; 

6 $9 frequency. 

Greek symbols 

thermal diffusivity [m’ s- ‘I; 
thermal expansion coefficient [K- ‘1; 
Euler’s constant (0.5772); 
difference; 
thermal boundary layer thickness [m] ; 
difference ; 
emissivity ; 
density [kg m-'1 ; 
mean free path ; 
kinematic viscosity [m2 s- “1; 

H/x ; 
Stefan-Boltzman constant; 
absorption coefficient [m-l] ; 
vt/rt (unless defined otherwise), for wire t, 
= u,tlr~; 

optical thickness; 

(7’ - T,)/‘ra; 
empirical factor ; 
numerical factor ; 
numerical factor ; 
refractive index ; 

Superscripts 

3 average ; 
* t at the time of the onset of convection. 

Subscripts 

7 

wire; 
fluid ; 

0, initial; 

r, radiative; 
C, conductive. 

1. INTRODUCTION 

THE THERMAL conductivity of liquids and gases has 
proved to be one of the most difficuit properties to 
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predict and to measure. On a molecular scale, the liquid toluene is presented in order to Illustrate the 
thermal conductivity of polyatomic molecules differs merits of the technique. 
from viscosity and diffusivity in that energy flux In this paper, we have mathematically investigated 

includes a contribution due to internal degrees of the above three forcing functions to determine which 
freedom as well as a contribution due to translational might be the most promising for transient analysis. It is 
energy [ 11. Past experimental determinations of concluded that the ramp function has several 
thermal conductivity have been hindered by the onset advantages as a forcing function. Based on this 
of natural convection and radiation. Recently, conclusion, a detailed analysis of a ramp perturbed 
however, a number of investigators [2 -71 have made system has been conducted to determine the deviations 
significant experimental progress through modifi- from the ideal mathematical model. These studies have 
cations of the transient hot-wire measurement been used to establish design criteria to minimize 

technique. experimental error and provide a method for 
Basically, the transient hot-wire method consists of correcting the apparent thermal conductivity for the 

imposing a heat generation function on a vertical wire residual errors. 
which is immersed in a stationary cylinder containing 

the fluid of interest. The temperature change of the 2. fSPERIMENTAI. VERIFICATION 

wire, AT, which is a function of the heat conducted by 
the fluid, is measured as a function of time, t. The 

In the experimental technique employed by this 

thermal conductivity of the fluid is then determined 
group of investigators, a ramp power forcing function 

from the analytical solution of the partial differential 
is used to heat a platinum wire (I,. = 6.35 pm) 0.14 m 

equations describing the transient conduction 
long. The ramp is generated using a digital power 

phenomena in the system. 
supply controlled by a microcomputer. The wire 

To date, only one heat generation function, the step 
resistance change is measured by a Wheatstone bridge 

function, has been extensively used. The use of the step 
and a series of amplifiers. Time measurements are 

function for heat generation necessitates very short 
made accurately by the computer crystal clock. A 

experimental times, typically less than 2 s [2,5,6,8], or 
typical experiment requires I- 5 s and yields 1022 data 

for less accurate measurements, less than 20s [7]. The 
points which are statistically analyzed to obtain the 

short duration of the experiment has necessitated data 
thermal conductivity based on the model presented in 

acquisition equipment that is sophisticated and/or 
this paper. 

From the mathematical model of the ideal line- 
expensive. Other heat generation functions which may 
be used in transient thermal conductivity 

source described in the forthcoming sections, it is 

measurements include the Dirac and the ramp 
apparent that a plot of Cl/t vs In(t) would result in a 

functions. 
straight line with its slope proportional to the thermal 

The Dirac function represents the simplest forcing 
conductivity of the fluid under consideration. Such a 

function which may be employed. The short duration 
plot is presented in Fig. 1 which illustrates raw data for 

and the small amount of heat input to the system 
liquid toluene at 299.35 K. The apparent thermal 

minimizes any contributions to the apparent thermal 
conductivity value obtained over the time interval of 

conductivity from convection and radiation. The 
0.1 5s is O.l26Wm~~‘K-’ as compared to the 

major disadvantage of the Dirac input is the high speed 
corrected value of0.129 W m ’ K _ ’ reported by Mani 

the precise measurements require to deduce the 
c91. 

thermal conductivity. 
Experimental work is currently under way to 

The ramp function possesses several unique 
achieve an accuracy of better than 7Y;, in the thermal 

qualities which make it useful for thermal conductivity 
conductivity measurement. 

measurements. Since the temperature rise of the wire is 3. I f4EORY OF I HE TRANSIE~I 

gradual, convective and radiative contributions to the HOT-WIRE TECHUIQI’E 

apparent thermal conductivity may be greatly reduced The transient hot-wire cell consists of an electrically 

in comparison to the step function. Furthermore, since heated fine wire suspended vertically in the fluid 

the ramp forced system does not degenerate to a medium for which thermal conductivity is to be 

steady-state, longer experimental times are also measured. The fluid is contained in a cylindrical 

possible. Accurate and precise generation of a ramp enclosure and maintained initially at a constant 

function as well as transient temperature temperature. The transient behavior of this hot wire IS 

measurements of the wire can be accomplished at idealized by the solution of the transient one- 

relatively low cost. dimensional pure conduction problem involving an 

Under a Department of Energy (DOE) sponsored infinitely long line source subjected to a time variant 

research contract, a system for measuring the thermal perturbation situated in an isotropic fluid, infinite in 

conductivity of synthetic liquid fuels at a temperature extent and initially in local thermodynamic 

range of 300~560 K and a pressure range of I- 100 atm equilibrium. 

has been designed and constructed. This system 
employs a ramp heat generation function. A brief 3.1. Ideal mathematical modrl 
description of the system, along with a sample test on The simplest mathematical description of the non- 
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FIG. 1. Experimental values of transient temperature rise for liquid toluene at 299.35 K in a ramp forced 
thermal conductivity instrument. 

steady-state hot-wire cell is given by the line-source 
solution of the conduction equation 

I.C. T(r,O) = 7-* 

B.C. (1) iim T(r,t) = To 
I+% 

3T 
(2) - 27&- 

& ,l-rW 
= s(t). 

The input function q(t) represents the rate of heat per 
unit length of wire. The general solution to any forcing 
function may be written in general terms using the 
convolution integral theorem as 

For large t: 
and smail r : 

Tfr, t) - TO = $4zk,t. (4) 

For the Dirac function, the solution shows that at any 
fixed radial coordinate the thermal conductivity may 
be determined from the slope of a plot of AT vs l/t 
when t is large (exponential goes to unity) provided rj is 
known. Thus, for large times the straight iine may be 
used to deduce the thermal conductivity and also as a 
criteria for the conformance of the system and model. 

3.1.2. Step function. For the step function q(t - u) 
= q. The magnitude of the step is represented by q. The 
well-known solution (10) is therefore 

T(r,t)- T,=&& -$ ( ! (5) 
f 

where E, represents the first exponential integral. 

I 
cc 

E, (~1 = 
du 

e-y-. 
Y u (6) 

For long times, the first exponential integral may be 

3.1.1. Diracfunction. For the Dirac function q(t - u) expanded and the series truncated. 

= 4(t - U) where 4 represents the heat content of the 
pulse. The solution is E,(r’/~t)=-y+ln~~~+~~)+O[~]i (7) 

D 
T(r,t) - T, = -fL 

4nk,t (3) 
where 0 represents the accumulation of higher-order 
terms. The resulting solution for long times is 
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T(r, t) - T, = &In 4”’ / i ) ~Y2C, 

In the case of the step function, a plot of AT against In 1 
provides a method of establishing the thermal 
conductivity based on a knowledge of y. 

3.1.3. Rump function. For the ramp function, 
q(t - u) = i(t - u). In this case $ represents the slope 
of the ramp. The convolution integral gives the 
following solution 

As in the previous cases, the solution may be simplified 
for long times to give 

For the ramp function, a plot AT/t against In t 
provides the criteria for establishing k, 

Each of the forcing functions considered has some 
potential merit for measuring thermal conductivities 
of fluids. However, each also presents experimental 
difficulties. 

3.21. D~rac~u~c&~~n. The Dirac function represents 
the simplest forcing fiction which may be employed. 
Based on current electronics, there is no extreme 
difficulty involved in generating this function with 
extreme precision for modest power levels. In 
principle, the Dirac function has a number of 
important advantages: firstly, the heat input to the 
system is small, thus free convection and radiation 
effects are insignificant; secondly, the duration of the 
experiment is such that many experiments can be run 
within a short time. 

A major disadvantage of the Dirac input involves 
the measurements required to deduce the thermal 
conductivity. At the moderate power levels used in 
solid-state circuits, the maximum temperature rise 
which occurs in a typical cell is on the order of 0.05 to 
0.5 K ; this rise occurs at times of the order of 0.01 ms. 
For times when the temperature-time response may 
be plotted in a linear fashion, the observed AT 
estimated from the simple model is on the order of 
10-‘-lO-SK and occurs between 1 and IOOms for 
most fluids. Table 1 presents some calculations for 
nitrogen and toluene using the Dirac function. 

The inability to accurately measure the small AT 
responses will limit the accuracy of the thermal 
conductivity which may be obtained using the pulse. 

3.2.2. Step funcfion. The step function has been 
employed by the previous researchers for both gas 
and liquid thermal conductivity measurements. 
Application of this model represents the state of the art 
in thermal conductivity measurements. Many of the 

correction factors for the additional heat transfer 
contributions to the apparent thermal conductivity are 
presented by McLaughlin and Pittman [l t], and by 
Healy e/ al. [12]. 

The step function has several limitations which 
restrict its usefulness. In the application of the step 
input, the system is strongly perturbed at short times. 
The majority of the temperature increase takes place at 
very short times and is not useful in the analysis. For a 
typical power input, and ace11 wire-resistance of lOOR, 
Table 2 indicates the temperature rise as a function of 
time. The lower time represents the initiation of the 
linear portion of the AT-ln f plot while the upper time 
represents the time of departure from linearity due to 
the onset of steady-state. The total resistance change is 
0.2011 over the useful range of the experiment even 
though the total resistance increase is on the order of 
0.535X Thus, less than 40”, of the total resistance 
increase is used in the measurement. If the sensitivity is 
to be improved, a higher power level should be 
employed. However, this will create a larger initial 
temperature rise and increase the effect of natural 
convection and radiation on the heat transfer from the 
wire surface. Sensitivity may also be increased 
somewhat by going to thinner wires for which the 
resistance per unit length is greater. 

At longer times, the onset of steady-state limits the 
duration of the experiment. For gases, this is important 
as this time is generally on the order of 6OOms. For 
liquids, the time is much longer and generally does not 
represent a Iimitation of the technique. 

3.23. Ramp function. The ramp function possesses 
several unique qualities which make it useful for 
thermal conductivity measurements. The only major 
drawback to its use is the requirement of a precision 
function generator capable of producing a current 
which varies as the square root of time. However, 
highly accurate generators may be readily constructed 
using solid-state electronics. 

In employing the ramp function. the power level 
increases with time. Thus, at short times when the 
model equation cannot be plotted in a linear fashion. 

Table I. Typical operation of a hot-wire thermal conducticlt~ 
for several fluids using a Dirac input 

Nitrogen (gas), 1 MPa, 2X9 K 
AT, K. wire surface 

1 X2* 
0.014 
0.0014 
0.000 14 

Toiuene (liquid), 0.1 MPa, 2X9 K 
0.013* 
0.003 
0.0001 
o.OoOoi 

*Maximum temperature. 



Ramp forced hot-wire thermal conductivity instrument 675 

Table 2. Typical operating data for a step input for toluene at 
ambient (4 = 0.320 W m-l) 

Time, ms AT, K AR, B 

100 1.23 0.325 
300 1.45 0.383 
600 1.58 0.418 

1000 1.69 0.447 
2500 1.87 0.494 
4000 1.96 0.518 
5000 2.01 0.531 

the power levelis low and the temperature rise is small. 
Additionally, the ultimate temperature rise and 
experiment duration may be controlled by varying 
both the power level applied to the ramp generator and 
the gain, thus permitting free convection and radiation 
effects to be minimized or eliminated. Since the ramp 
forced system does not degenerate to a steady-state, 
longer experimental times are also possible. 

This may simplify the time measurement 
significantly. Table 3 presents typical operating data 
for a ramp input for toluene. At short times during the 
initial stabilization of the measuring circuit (in the 
order of 60-1OOms) only 12 % of the overall resistance 
change occurs ; the remain~g 88 % can be utilized for 
the thermal conductivity measurement. 

Therefore, the ramp heat perturbation has 
significant advantages over the Dirac and step 
functions and the remainder of this paper will deal only 
with this type of heat generation function. 

4. ANALYSIS OF AFPROXI~A~ONS TO 
THE IDEAL LINE-SOURCE MODEL 

FOR RAMP PERTURBATION 

The ideal line-source model only approximates the 
response of the actual cell. A variety of factors which 
might effect the temperature response of the wire must 
be considered. 

4.1. Truncation error 
This error arises from the truncation of the E,(u) to 

obtain the long time solution. The ideal line-source 
solution given by equation (10) is 

4F = &fCl(+-) - e-(114r) + (&)E,(&)] 
(11) 

where 

Ei & = -y + ln(42) + k + 0 
(i 

1 2 

[i )I 42 (12) 

0 represents the accumulation of higher-order terms, 
and ‘5 = utfr;D. 

For very thin wires the terms in equation (12) of 
order (l/r)’ and smaller may be ignored. Substituting 
the above expression into equation (11) and 
comparing with the long time solution yields the 
following equation for truncation error 
‘iMT 24:4 - H 

(13) 

At ambient conditions, using a wire with a radius of 
6.35 pm, for a typical case of methane at time 100 ms, 
the truncation error equals 3.6 x lo-’ %. For toluene 
under similar conditions, the error is about 0.25%. 
Since the error is inversely proportional to time, a 
starting time may be selected for which the truncation 
error is insignificant. 

Considering the ideal line-source solution for a 
ramp forcing function [i.e. equation (lo)], as long as 
the rate of energy supply per unit length remains the 
same, the temperature history at any given radial 
position in the fluid is independent of the radius of the 
wire. Following Healy [12] we conclude that the 
thermal conductivity can therefore be estimated at 

r + r,, without expending much effort to insure 
accurate cylindricity of the wire. It should be noted 
that periodic fluctuations in the wire radius on a scale 
comparable to the wire radius may contribute to 
deviations from the ideal line source. The magnitude of 
this deviation cannot be readily predicted, since the 
conductive boundary condition contains a varying 
flux angle. In practice the wire should be examined 
optically to assure uniform cylindricity. Very uniform 
drawn wire with a radius of as little as 6.35pm 
(l/2000”) can be obtained from commercial suppliers. 
The cell wire which is currently being used in this 
laboratory is of this type. 

4.3. The efect offinite wire heat capacity 
The transient one-dimensional equations of energy 

for the hot wire and the fluid surrounding it along with 
the appropriate boundary conditions are 

and 

Table 3. Typical operating data for a ramp input for toluene 
at ambient (4 = 0.071 W m-l SC’) 

Time, ms -- AT, K AR, R 

100 0.023 0.006 
300 0.083 0.022 
600 0.184 0.049 

1000 0.330 0.087 
2500 0.924 0,224 
4000 1.560 0.412 
5000 2.000 0.528 
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Fluid: Helium at 19MPa,25C 

O.85 

Time Milliseconds 

FIG. 2. Heat capacity effect on the numerical and analytical solutions of the 
conduction with a step change in heat flux. 

with B.C. 

t<o T, = T = T” 

i>O r=r_,T=T, 

t>O r = rw, T, = T 

where subscripts w andf represent the wire and fluid, 
respectively. 

Equations (14) and (15) were transformed to 

dimensionless groups and solved numerically. The 
space derivatives were approximated by a second- 
order correct Taylor series expansion about the center 

points, with the exception of the boundaries, where 

both forward and backward differences were applied. 

The tridiagonal matrix resulting from equation (15) 

was solved at each time interval using the Thomas 
algorithm. All implicit time derivatives were 

approximated to first-order accuracy, which 

necessitated relatively small time-steps. 
The finite difference model solutions neglecting and 

considering wire heat capacity are shown to agree with 
the analytical solutions (10) in Fig. 2 for a step change 
of heat in a system using helium with the outer cell 

dimensions specified by DeGroot rt al. [2]. For the 
purpose of testing the model, a wire of radius 25 pm 

was chosen. This size probably represents the largest 
wire size an experimenter would consider due to wire 
resistance considerations and, because of the wire 
mass, represents a case where the wire heat capacity 
effect is very important. 

The finite difference model was also compared with 
the analytical solution for the ramp heat input 
function, neglecting wire heat capacity. Using a typical 
fluid, toluene, the numerical and the analytical 
solutions for the simple ideal line-source agree to 
within 1%. These solutions, therefore, bracket all 
situations of importance. The excellent agreement 
suggests the numerical model is generally applicable. 

The finite difference model was used to investigate 

transient one-dimensmnal 

the wire heat capacity effect for a ramp heat input 

function. Using toluene, the heat capacity effect is 
undetectable for a wire with a diameter of 5 pm when 
the heat is input at a typical experimental rate of 

0.0283 W m-l s-i. For the same heat input, but with 

an order of magnitude larger wire, the heat capacity 
effect causes about 2% error in the slope of AT:t vs 
In(t) plot. For modest wire diameters, the wire heat 

capacity effects are large at short times but decrease 
rapidly as time progresses. Figure 3 illustrates the 

time-dependent nature of the heat capacity induced 
error for liquid toluene. Finally, it should be noted that 

the ratio of the product of the density and the heat 
capacity of the fluid to that of the wire (i.e. (1, 
= ~~C,/p,c,) is the controlling parameter in the 
generation of the error in thermal conductivity. If (11 
= 1, then the effect of finite heat capacity is 
insignificant at all times. For liquid toluene (w = 0.5) 

the maximum value of the correction is 0.4?, at T 
= 950, but for gases such as methane where w can be as 
low as 0.05, the correction is in the order of 5 -7Y+,. 

4.4. Bounded media 

For a step heat generation function, McLaughlin 

and Pittman [ll] have modified the boundary 

condition at the inner cell wall (i.e. at Y = h, ‘T_, = T,J 
and have resolved the transient conduction equation. 
For b/r, >> 1 (b is the inner cell radius) the difference 
between the asymptotic form of the solution originally 
derived by Fischer [13], and the ideal line solution is 
obtained. Numerical solutions for various values of 
h/r, and T yield the percent error of the hot-wire 
temperature due to wall effect. Similar analysis by 
Healy et al. [12] resulted in a criterion for 
determination of the inner cell radius, based on 
minimization of the difference between the ideal hne- 
source solution and the one from the modified 
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FIG. 3. Heat capacity effect for liquid toluene at ambient condition in a ramp forced system, 

boundary case. This criteria (b’/o(t > 5.783 . . .) 
confirms the results of McLaughlin and Pittman [ 111. 
Healy’s method of solution is utilized for the case of 
ramp power generation input. Using Duhamel’s 
integral technique [14J, the temperature profile 
resulted from the modified boundary condition is 
obtained for the ramp perturbation as 

(16) 
where A = gl; u/b2, and g. denote the roots of J,(g,) 
= 0 (9. = 2.4048,5.5201,8.6537, 11.7315, 14.9309.. .). 

The solution of the ideal line-source can be 
rearranged as 

Therefore, an outer-boundary correction can be 
obtained as 

6AT= AT,,a, - AT 
II 

[i > 
m nYo(g,) =& tin g + c 

I It=1 
~(1 - eVA*) 

1 
. 

(18) 
By selecting an appropriate bound on the value of 
b’/clt one can establish an order of ma~itude 
limitation on &AT/AT, so that it contributes an error 
of 0.01 oA or less to thermal conductivity. 

The numerical solution of the above equation, with 
Bessel functions generated from a polynomial 
approximation (15) and the roots of J&g,) taken from 
standard tables [16] for the first 50 terms, gave a 
criterion b’/at > 3.120. This compares favorably with 
the value of b’/at = 5.783 for the same error size with a 
step function. The experiment with the ramp input 
may be run almost twice as long as the step without the 
outer boundary correction. When the outer boundary 

correction is made, the size of the correction may be 
determined by equation (18). 

4.5. Knudsen effects 
Since very thin wires are employed to reduce the 

correction due to their finite heat capacity, it must be 
expected that Knudsen effects may be important at the 
lower densities where the mean free path in the gas 
becomes of the same order of magnitude as the wire 
diameter. For a uniform heat input to the wire Healy et 
al. [12] have shown that the principal effect, to the first 
order, is a shift in all points on the AT vs In t diagram 
by a constant amount without changing the slope, i.e. 
the reported value of k,. At lower densities, second- 
order corrections are more significant and need to be 
considered. For a typical case of helium at I atm and 
room temperature, Healy et al. [l2] reported that the 
Knudsen effect results in a 0.3% error in kf for a wire 
with r = 2.5 pm. 

The Smoluchowski equation (17) may be used to 
describe the difference in temperature between the 
fluid and wire due to Knudsen effect 

In equation (19) T,,, is the wire temperature, T is the 
temperature of the adjacent gas and $ is an empirical 
factor proportional to the mean free path of the gas. 
No reliable measurements of this factor are available. 
Using the following boundary condition 

(20) 

we obtain 

T, - T= @/2nkfr,. wt 

The modified solution for the ideal line-source 
subjected to a ramp input, to correct first-order is 

aT,=AT+(T,,,-T)=$;[In(g)+z]. 

(22) 
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Equation (22) shows that the principal effect of the 
Knudsen temperature jump is to shift the curve of AT/t 
vs lnt without changing its slope. Secondary effects 
will be much less than 0.3% since the gradual 
temperature increase in wire results in a negligible 

temperature jump even at low densities. 

4.6. Axial conduction 
Heat is fost from the wire both radially to the 

surrounding fluid, and axially to the supporting ends. 
The axial conduction effect therefore results in a 
modification of the transient temperature profile of the 
ideal line-source since the profile becomes a function of 
both axial position and time. In order to determine the 

effect of this modified temperature profile and the 
thermal conductivity of the fluid. a comparison is 

made between a finite length of a fine wire bounded by 
infinite conducting media at both ends, and a finite 
length of an infinitely long wire. 

Consider a perfectly cylindrical wire with a finite 
length bounded by two infinite conducting media. The 

wire is heated internally due to the passage of a current 

I and is cooled by loss of heat to the surrounding fluid 
with an interfacial conductance coefficient If,,, which 

for simplicity is assumed to be constant. (Note that in 

the real situation Ho =f(?J.) Heat is also lost to both 
ends through the axial conduction mechanism. One 

can obtain an indication of the importance of axial 
conduction by comparing the solutions for the infinite 
wire and the bounded wire. 

The governing differential equation and boundary 
conditions for this idealized situation, in dimensionless 

form, are as follows 

(23) 

with boundary conditions 

8, = 0 at TV = 0 

0, = 0 at Z=O and Z = L/r,.. 

The solution to the above differential equation for a 

ramp heat input perturbation is given by 

sinh c1.Z + sinh p(L - Z) 

where A, = H + rr,J?n - I)” (n/LY: B, = sin 

[(2n - l)nZ/L]; and C, L- (2n - 1) [(2n - l)l 

p= + L?$]. 
In the case of the infinite line-source with axial 

conduction, the transient temperature profile is de- 

scribed by 

?!!? = Q _ H(), (25) 
X’ 

with boundary condition 

The solution to the above differential equation for a 
ramp heat input is given by 

The integral average wire temperature at time 7 IS 
defined by the following equation 

Equation (24) was numerically evaluated with different 
parameters comparable to typical experimental cases. 

The differences between the thermal conductivit, 

obtained using gW and the one using 0,. was found to be 
negligible, for a typical experiment, using a wire with 
radius 6.35 pm and length greater than 0.1 m. For 

shorter wires the error was larger, though still neglig- 
ible (i.e. for L= 0.05 m, error in slope, (X165’,,). For 

design purposes, the error due to axial conduction for a 
wire with a radius in the order of 6.35 pm is negligible 

for any length greater than 0.10 m. For very accurate 
measurements one might utilize the well-established 
experimental technique of employing a &o~~pensat~ng 

wire to reduce the predicted error by orders of 
magnitude. Details of this technique and the approp- 

riate working equations are presented by de Castro Tut 
al. [18], and by Anderson et ai. [19]. 

4.1. Free conrection 
in previous studies the onset of convection has been 

estimated for a finite length of a semi-in~nite vertical 
wire subjected to a step change in heat input. It has 
been shown [20] that the initial part of the transient is 
locally pure conduction with a transient one- 
dimensional temperature field. This regime is termi- 
nated at any particular point in the vertical coordinate, 
by the leading edge of the fluid molecules moving 
upward with velocities determined from the one- 
dimensional analysis. Mani [9] has estimated the 
maximum penetration distance of the leading edge 
effect for a step change in heat flux for both one- 
dimensional and two-dimensional cases. Other tran- 
sient natural convection studies in relation to thermal 

conductivity measurements, have generally used the 
leading edge analogy [I 11. Since the prediction of the 
thermal conductivity is based on the transient tem- 
perature profile at the wire-fluid interface, a more 
correct criteria for free convection effects should 
involve the transient integral average wire tempera- 
ture. The experimental study of Pantaloni et rd. [21] 
also suggests that the onset ofconvection is related to a 
vertical component of the thermal gradient. In the case 
of the ramp perturbation the dynamic process is 
governed by the following momentum and energ) 
equations which are simplified by the Boussinesq 
approximation [22] and by the boundary-layer 
assumption 



Ramp forced hot-wire thermal conductivity instrument 679 

au av v 
-+-+-=o. 
az aR R 

(30) 

Initial and boundary conditions are : 

t 

for all R and Z, r < 0 

rJ=I/=Q=O at Z = 0, all R, T > 0 

at R + co, all Z, T > 0 

U = V= 0, at R = 1 for all Z, T > 0 

ae & 
aR R=i =2n’ 

all Z, r > 0. 

These conditions are consistent with previous studies 
[9] and only differ on the forcing function. A numerical 

solution to the partial differential equations (PDES) 

was developed based on the method of lines for one 
spatial variable and forward difference for the second 
spatial variable. The method of lines uses a finite 

element collocation procedure with piecewise poly- 
nomials as the trial space for the descretization of the 
spatial variable [23]. The forward difference pro- 

cedures reduce the PDE system to a number of PDES 
in one spatial variable which are then reduced to a 
semi-discrete system of ordinary differential equations 
which only depend on time. The time integration is 
then accomplished by use of slightly modified standard 
techniques [24, 251. 

The temperature profiles are obtained as 

fJ = f(R, Z, r) 

and the integral average temperature profile at the wire 
surface is obtained as 

B,(R,T) = 

s 
ZBdZ/Z~.=, (31) 
0 

from the ideal line source model a plot of e/r vs ln T 
gives a straight line with its slope proportional to the 
thermal conductivity. It is expected that a similar plot 
using QW as the wire temperature will give a straight line 
at short times and will show a change to a lesser slope 
at the onset of convection. A plot of &,/T vs fn T for a 
typical case ofmethane at 300 K and 5.0 MPa is shown 
in Fig. 4. As it is seen, at short times a straight line is 
obtained. The criterion for onset of convection is 
determined by deviation from linearity of by more 
than 0.1% (change in slope). This point is defined as r* 
on Fig. 4. By varying the slope of the ramp, Prandtl 
and Grashof numbers a series of curves representing 
the time for the onset of convection as a function of 
dimensionless heat parameter Q* are developed and 
are presented in Fig. 5. The dimensionless heat para- 
meter Q* is equivalent to eNu*/rNu where Nu* and 
Nu are Nusselt numbers; the former is based on the 

FIG. 4. Separation of the transient two-dimensional from 
transient one-dimensional solutions in a ramp forced system. 

radius of the wire, and the latter is based on the thermal 
boundary layer thickness. These curves, in the order of 
increasing Rayleigh number represent methane at 
300 K and 5.0 MPa, toluene at 300 K and 0.1 MPa, and 
SRC-II (coal derived) naphtha No. 1046 at 310.8 K 
and 0.1 MPa, respectively. 

By specifying the slope of the ramp 4, and the 
physical parameters of the system, one can obtain the 
time for the onset of convection from Fig. 5. The 
temperature rise of the wire at the time of the onset of 
convection can be obtained from Fig. 6 which is a 
graphical presentation of the ideal line-source solution 
for different Prandtl numbers. A more simplified 
method of presenting the onset of convection can be 
shown in terms of a modified Rayleigh number which 
expresses the transient radial temperature profile as 
follows : 

JW) = [Wv4l@AW,t). (32) 

The thermal boundary layer thickness is assumed to be 
given by 

6, = 4 JW) (33) 

FIG. 5. Onset of convection in a medium surrounding . 
vertrcal line source subjected to a ramp heat input 

perturbation. 
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DIMENSIONLESS TIME (rc) 

FIG. 6. Transient one-dimensional conduction in a thermal 
conductivity cell subjected to a ramp heat input perturbation 

~~ the effect of Prandtl number. 

where 4 is a numerical factor. By substituting equation 
(10) in equation (32) we obtain 

According to Pantaloni rt al. [21], the experimental 
values for the onset of convection from a vertical wire 
immersed in three different liquids and heated with a 

step change, resulted in a unique value of the Rayleigh 
number [i.e. Rn(t*) - 3043]. Pantaloni did not extend 

this analysis to vapors and gases. 
For the ramp heat input, the free convection equa- 

tions result in approximate Rayleigh numbers defined 
by equation (32), of 58d3, for liquids and 3904” for 
methane gas. Furthermore. a strong dependency of the 
Rayleigh number on q* at low heat input levels is 
observed. These observations suggest that the use of 

the modified Rayleigh number with a constant numeri- 
cal factor is insufficient in describing the transient 

behavior in a ramp forced system. Referring back to 
Fig. 5, the obtained Rayleigh numbers of (5S4J) and 

3904j), approximately describe the intermediate re- 
gion (i.e. 20 x lo-’ < Q* < 80 x IO-*). Substituting 
these Rayleigh numbers in equation (34) yields equa- 

tion (35) 

where t = 730 for liquids and t = 4900 for gases. 
As an example, equation (35) with heat input at a 

rate of 566 mW m- ’ s-l gives a time for the onset of 
convection for methane, toluene and SRC-II naphtha 
as 0.7s, 1.7 s and 7.3 s, respectively. Experimental 
results of Pantaloni et al. [21] for the same overall heat 
input for a step function gives a time for the onset of 
convection of 1.3 s for toluene. 

As a result of this analysis a typical set of operating 
parameters for thermal conductivity measurement are 
presented in Table 4. 

Physically some of the energy is radiated away from 
the hot wire due to the temperature difference between 
the wire and surroundings. The radiated energ! Is 

partly absorbed by the fluid. whose absorptivity i!, 
strong11 selective with respect to wave length and 

partly absorbed and re-emitted from the outer cylin. 
der. In thecase ofa step change in heat input, Mani [9 ] 
has prcscnted a complete analysis of approximations 
of the radiation contribution to the apparent thermal 
conducti\ it!. 

Radiation effects ofa ramp heat Input to the wirecan 
be obtained by modification of rhc step heat input 
analysis 

C‘onscr\ation of energy in a stationary radiatmn- 
participating medium in local thermodynamic cquilib 
rium ib described by equation (36) 

where 

q,. and q1 represent the conducti\c and radiative 
contributions, respectively. 

In evaluating q,, three different radiative regimes 
should be considered : 

(a) Perj~tI~ opaque,fhid: the radiative component 
y, = 0, and therefore, no correction is required. 

(b) Transparent j7uid: the amount of energy radi- 
ated is given by Horrocks and McLaughlin [26] and 

simplified by Healy et (II. [12] a> 

q, = 2zr,,a(Tz -. 1-z) --- Xilr, a7-i: AT,,., !37j 

The radiation loss modifies the lines source solution 
and is equivalent to a reduction in T(r,.. t) by the 
amount. 

The above conditions are satisfied in measurements on 
dilute gases in the thermal conductivity cell. The 

correction is negligible due to small temperature 
differences and small radius of the wire. 

(c) Purtidly absorbing~fluid : in this case the heat is 
absorbed by the fluid depending on its optical thick- 
ness F0 which is defined by the relation 

r0 = K,E (39) 

where K, is the mean extinction coefficient for radi- 
ation and E is a characteristic dimension. The mean 
extinction coefficient is defined by 

i 

T 
K, = K,I$T)d$ ; [ ’ I,(T)d$ (40) 

u’ 0 &I ii 

where Iti is the black body radiation intensity for the 
frequency 4 and KS; is the extinction coefficient for this 
frequency. 
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Table 4. Simulated parameters for the thermal conductivity measurement in a ramp 
forced system 

Fluid T, K P, MPa 4, Wm-‘s-’ t*, s AT*, K 

Methane 300 5.0 

Toluene 300 0.1 

SRC-II 300 0.1 

rw = 6.35 x 10m6 m. 

4.9. Optically thick approximations 
For a strongly absorbent fluid (fO >> 1) the radiative 

transfer can be treated as a diffusional process 

q, = -k,grad T 

where q1 is independent of the cell geometry and k, is 
constant which depends on the optical properties of 

the fluid. Poltz’s [27] expression for q, in an optically 
thick plane parallel layer is valid for the present cell 

configuration 

and 

k =16n2& 
I 

3K O 

The solution of the energy with ramp perturbation can 
be simplified as 

8 4 
t = 4nk,(l + A) 

ln4Et(l + A) 
+ 

$0 “’ 1 (43) 

where A = q,/qC. 
It can be shown that for strongly absorbent fluids 

the apparent thermal conductivity may increase to 
about 8 ‘A above its radiation-free value. 

4.10. Optically thin approximation 
For f. << 1, there is negligible self-absorption and 

ths fluid exchanges radiation directly with the bound- 
ing surfaces and not with itself. The influence of the 
bounding surfaces is more pronounced in the parallel 
plate or co-axial cylindrical geometry than in a hot- 
wire method. The surface area of the emitter is small 
compared to the volume of the thermally disturbed 

fluid and the medium beyond the boundary layer and 
the outer wall act as black bodies. 

The optically thin approximation is similar to the 
transparent regime assumption in the hot-wire cell and 
hence negligible correction. 

4.11. Intermediate regime 
In this regime each fluid element exchanges radi- 

0.03 2.1 1.4 
0.07 1.5 2.2 
0.566 0.7 7.6 
0.40 2.0 4.1 
0.566 1.7 4.8 
0.80 1.5 5.9 
0.10 14.5 8.9 
0.20 11.0 13.1 
0.566 7.3 23.6 

ation with other fluid elements as well as with the 

bounding surfaces. The fluid adjacent to the wire 
though absorbs radiation emitted by the wire surface 

receives back only a small proportion of its own 
emitted radiation unlike the fluid away from the wire. 
Therefore, at large values of time and for small 

Bouguer number (BU = Kr, << 1) (28), the fluid close 
to the wire is always optically thin, away from the wire 
it is optically thick, with transition in the intermediate 

region. The radiant heat flux at the wire is approxi- 
mated as 

A=~~,~=[lhrl~~~T1lIT(r,K.,r,,i). (44) 

Values of l? have been approximated by Mani [9] 
and by Saito and Venart [29]. Aside from the basic 
assumptions of small radiative contribution, grey body 

absorption, and additive radiative and conductive 
fluxes, these analyses differ in two respects. Mani’s 

analysis of the internal zone is algebraic and based on 
an optically thin limit, whereas Saito and Venart’s 

solution is numerical using a modified integral method 
without this assumption. Furthermore Mani assumed 

that the emissivity of platinum was unity. Based on the 

above discussion, it is evident that the numerical 
values of R differ in both analyses. Since all transient 
hot-wire cells are fitted with a platinum wire (emissi- 

vity 0.037), the Saito and Venart analysis for 

evaluation of R, is more appropriate. 
Rearranging equation (43) we get 

0 * 
; = 4%ln(4cct(l + A)/rf,,D)‘!l+A. (45) 

I 

A plot of O/t vs ln( 1 + A)t”’ +’ gives the radiation 
free value of the thermal conductivity. 

For similar heat input to the wire, at short times 
when the temperature rise for a ramp forced wire is 
considerably less than the one for a step forced case, 
the radiative contribution will be considerably less. At 
large times, however, the radiative contribution may 
become higher for the ramp depending on the actual 
temperature difference. 

Typically for toluene at 25°C (q = 1.5, K = 35 cm- ‘) 
the radiative contribution to the apparent thermal 
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conductivity is 0.3y,,. The radiative correction in- 
creases at higher temperatures and longer times. This 
suggests that a radiation free value for the thermal 
conductivity can be obtained by extrapolating the 
obtained time variant thermal conductivit! values to 

time zero. 
In conclusion, it is apparent from the above dis- 

cussion that a radiative correction in a typical thermal 

conductivity cell is only needed for fluids with mod- 
erate and high optical thicknesses and then only if the 

maximum temperature rise exceeds 2 3 K. 

SU\lMARY 

Three heat generation forcing functions (step, Dirac, 
and ramp) for use in the transient thermal conductivity 
technique are evaluated. It is shown that the ramp 
function offers several advantages over the step and 
Dirac functions. For the idealized model of a vertical 

line source subjected to a ramp perturbation source 

the thermal conductivity is obtained from the slope of 

the AT/t vs In t diagram. Analytical and/or numerical 
solutions to the deviations from the ideal line-source 

model for the ramp have been given. These include 
truncation error, non-uniform wire radius, heat ca- 

pacity effect, bounded media, Knudsen effects, axial 
conduction, free convection and radiation. These 

deviations can be used to design a ramp driven thermal 
conductivity system such that negligible corrections to 

the raw experimental data need be made. Therefore, 
with appropriate cell design, the thermal conductivity 
can be deduced directly from the ideal line-source 
model. Work currently underway to apply these 

results will be reported in a separate article. 
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MODELE MATHEMATIQUE D’UN INSTRUMENT DE CONDUCTIVITE 
THERMIQUE A FIL CHAUFFE SELON UNE RAMPE 

RCumLOn ttudie le modele fondamental et ses corrections pour la determination absolue de la 

conductiviti thermique de fluide a partir de la technique du filchaud en regime variable.On prisente des 
solutions analytiques pour trois fonctions de generation de chaleur (Dirac, echelon, rampe). La fonction 
rampe offre plusieurs avantages sur la fonction echelon qui est courrament utilisee par les explrimentateurs. 
Des expressions pour les corrections du modele idealist dun systeme avec rampe sont present&es en ce qui 
concerne: l’effet de capacite thermique, l’erreur de troncature, le rayon non uniforme du fil, les front&es du 

milieu, I’effet Knudsen, la conduction axiale, la convection libre et le rayonnement. 

EIN MATHEMATISCHES MODELL FUR EIN HITZDRAHT-WbiRMELEITFAHIGKEITSMESS- 
GERAT, DESSEN AUFHEIZUNG NACH EINER RAMPENFUNKTION VERLAUFT 

Zusammenfassung-Es wurden das Grundmodell sowie Modellkorrekturen zur absoluten Bestimmung der 
Wlrmeleitfahigkeiten von Fhissigkeiten mittels einer instatiomiren Hitzdrahtemethode untersucht. Analy- 
tische Losungen fiir die Warmeerzeugungsfunktionen (Einheitsimpuls, Sprung, Rampe) werden angegeben. 
Die Aufheizung nach der Rampenfunktion hat mehrere Vorteile gegeniiber der Sprungfunktion, die 

allgemein von den Experimentatoren angewandt wird. Es werden Ausdriicke fiir die Korrekturen des 
idealisierten Modells eines mit der Rampenfunktion betriebenen Systems angegeben, und zwar fiir den 
EinfluB der Wtirmekapazitat, des Abbruchfehlers, ungleichformigen Drahtdurchmessers, endlicher Medien, 

der Knudsen-Effekte, axialer Leitung, freier Konvektion und Strahlung. 

MATEMATAHECKAR MOJ(EJIb M3MEPMTEJIR TEfUIOflPOBO~HOCTM. 
IlOCTPOEHHOI-0 HA OCHOBE METOAA HAfPETOH HMTM. HA KOTOPYIO fIOAAETCR 

flMJIOO6PA3HOE HAflPqRXEHME 

AwioTaunn- l'hCCJIenOBa,IaCb bloflenb, pa3pa60TaHHaa LIJIII 0npeneneHnn Te"JIO"pOBO~HOCTH men- 

KOCTII HeCTaUnOHapHbIM MeTOnOM HarpeTOci HBTW. npenCTaaJTeHbI aHaJIHTH'IeCKAe peIIIeHnII aJIs TpeX 

I$~HKUIIA TennoBbIneneHns (+~HKUIIU ,@rpaka, crynemiaroA w nnnoo6pas~oA). nOKa3aHO. 9~0 nnno- 

o6pasuax I$yHKUIis TenJIOBbILWIeHHR AMeeT HeKOTOpbIe IIpeAMyIUeCTBa HaLI CTyneH'IaTOfi, 06bI'lHO 

nCIIOnb3yeMOfi 3KCnepnMeHTaTOpaMn. npeLICTaBfleHbI BbIpameHnR LIJIR O"pene,IeH"s "OITpaaOK K nae- 

anuanpoeanno~ nsnoo6pa3no~ Monenrt. KOTOpbIe yWTbIBaIOT: 3@,IeKT TenJIOeMKOCTH. OUIn6Ky 

IICJIenCTBIie OT6paCbIaaHns 'IJIeHOB ypaBHeHna, HeOnHOpOaHOCTb HNTH n0 pannycy. OrpaHWIeHHOCTb 

CpeabI. 3+heKTbI KHynCeHa,aKCnanbHyIo Te"JIO"pOBOaHOCTb,cBo60nHyIO KOHBeKUnIO II n3,Iy'IeHne. 


